
CM+ DEMO TUTORIAL

CM+ Demo Overview
The CM+ demo tutorial lets users become familiar with the capabilities of CM+ as it is configured out-of-the-box.
Users wishing to evaluate CM+ customized to their own environment should consult their CM+ Administration
team..

The tutorial is role-based, focusing on three typical development roles: project manager, developer and
configuration manager. Executing the entire tutorial will give the evaluator a feel for the role interaction and the
seamless integration between applications.

Although many of the sections of this guide involve interactive operations, some sections are provided for
information purposes only.

The tutorial is centered around a sample program, which helps its users calculate their bonuses. The
BonusCalculator is a Windows executable which can be found in the “bin” directory of your STS installation - feel
free to try it out. After selecting minimum and maximum bonus parameters using the Options menu, you calculate a
bonus by clicking the Calculate button. Click the OK button to receive your bonus. In Release 2 of BonusCalculator,
the project manager has identified some required enhancements and has been advised of an emergency problem
that prevents users from receiving their bonuses.

CM+ Libraries and Products
A CM+ Library is the entire CM+ Repository along with the set of external customization files which help to give a
project it's specific user interface. Each library contains all project data that can be stored in soft form. This
includes documentation, source code, test cases, requirements, problem reports, planning data, and so forth. The
out of the box configuration of CM+ is meant to hold most Application Lifecycle Management (ALM) data. It may be
extended to meet the additional requirements of any product development team.

The CM+ Repository is part of the STS Engine which provides not only a Hybrid Database capability (i.e. relational
data, revisioned data, hierarchical data, large objects, etc.), but also a Process Engine, Command and Macro
Language, and a GUI Generation capability.

Each CM+ Library can manage one or more Products. Typically, independent development teams have their own
CM+ libraries, while products which are administered by a single team or which have some level of data sharing or
common planning are grouped into a single library. Views of the library contents can be easily partitioned by
product, so that any particular user can see only the products assigned to that user. By default users can see all
products but typically work with a single product at a time.

A Product is a container for all of the data associated with a product's application life cycle. When navigating data
within the CM+ Library, it is normal to establish a Product context so that the data shown in queries, reports, source
trees, to-do lists etc. reflect only the product (and its sub-products) in context.

Each product has a "root node" which denotes the root directory for all product source code. Source code is
arranged hierarchically below this root node and typically will be grouped according to the various target
deliverables to be generated from the code. There may or may not be specific conventions used for grouping
source code within a given product team.

Starting the Demo Server
CM+ is a Client/Server application. The smart client permits a full suite of query capabilities without a running
server. However, in order to process changes to a library's data, such as adding a problem report, the CM+ Library
Server needs to be running for the project library.

In normal operation, the CM+ Library Server runs as a service or daemon on a server platform. In the tutorial, you
will start and stop the server manually. In this way, Neuma will not be adding to the “services” or “Initialization
Sequence” running on your Windows or Unix system.

As well, in normal operation, the user will not have write access to the repository and its files. This is accomplished
through the use of the CM+ Transaction Server process which collects transactions and sends them to the CM+
Library Server. However, to keep things simple for now, the user has write access to the demo repository.

To start up the demo library:

1. Windows: Use the Start menu to Select Programs/CM+/CM+ Demo Administrator
Unix: sts demo -s -u stsmgr (from command shell)

 PLEASE NOTE: The “stsmgr” (Administrator) Password should normally be blank.

A CM+ client session will start with user ‘stsmgr’ logged in. This user can perform all administrative operations
from the standard CM+ client.

2. Under the Administrator Menu select Start Server. A library server process will start, noting the library name
and date and time. On Windows, the process will start in a command window. Minimize, but do not close, this
window. (This window would not appear if the server were started as a service.)

3. You may minimize the stsmgr`s CM+ administrator client session (or close it down) once the server process has
started. To stop the library server, first return to the CM+ Administrator (stsmgr) client session, then select Stop
Server from the Administrator menu.

PROJECT MANAGEMENT ROLE

Project Manager Overview
To demonstrate some of the project management capabilities, log into CM+ as the Project Manager (smith).

On Windows, select CM+ Demo Project Manager from the Start/Programs/CM+ menu, or log on as user smith
(e.g. run C:\Neuma\sts\bin\sts demo -g -u smith).

On Unix, specify the “-u smith” after the library name when entering the library: sts demo -g -u smith (assumes an
sts alias or the CM+ ’bin’ directory in your PATH).

Once logged in as user “smith”, your menus will include project management functions not available to other roles.

Setting a Development Context
CM+ maps your product road map (i.e. release history and plans) onto tracked products and development
streams (which culminate in one or more releases). Setting a development context enables you to control your
view of the repository data, and ensures you see the correct revisions of files and directories. It also helps to
ensure that the correct information is captured, by default, on forms, that your reporting and query operations are
normally specific to your context, and that pick lists and other information lists have the most suitable information in
them.

This demo tutorial assumes we`re working with the BonusCalculator product in the rel2 stream. Set your
development context by selecting Set Context from the Context menu.

Set Product to BonusCalculator and Stream to rel2. Set the Workspace to a location in your file system where you
want to deploy and edit files. After setting your context, the status bar at the bottom of the screen will change to
reflect the context settings. The promotion level may be left blank for know – it permits you to omit file revisions,
lower that a given promotion level, from your source tree view.

Setting a Project Context
A project manager typically works within the context of a defined project. A project may be defined de facto, such
as all of the activities for a given release of a given product, or explicitly, by specifying the root of a project
activity/task tree commonly known as the Work Breakdown Structure (WBS). In CM+, some of the project menus
depend on the selection of a WBS project.

Establishing a project context tells CM+ that future queries and operations are relative to the project, so that the
project information does not have to be specified on each form or query. In some cases, the queries or operations
are available as right-click operations on activity trees or sub-trees, and do not require an explicit project context to
be set.

Select Projects/Set Project Activity… from the Activities menu. A dialog will appear with a list of projects and
sub projects. Select a.15 as the project and click OK. Subsequent operations will use this project activity as the
current project. The Current Project WBS (Work Breakdown Structure) tree will be shown in the tree browser
panel. This tree may also be accessed in a 'browsetree panel' using the Projects/Work Breakdown Structure
menu under the Activities menu. Both the tree browser panel of the main panel and the separate graphical
browsetree panel support various right-click functions.

Looking around this main panel screen, the key portions of the user interface are visible. At the top are the menus.
Below them are navigation buttons, the tool bar, and the search bar. The left pane is the tree browser panel and
contains both trees (folder icons and/or +/- expanders) and summary/to-do lists. The CM+ Process bar is also
available in this pane. The top right pane is the data list pane, and lists data records, typically those selected in the
tree browser pane. The search bar can be used to restrict the selection, and the titles can be used to sort the
selection. The bottom pane, the tabbed pane, contains a bunch of tabs which are used to display messages,
process guidance, and more complete data for a particular record. Below that is the optional command line input
area, and below that, the status bar, which includes context information.

Viewing a Gantt Chart
To display a Gantt Chart for the project, right-click on the activity a.15 and select Gantt Chart. On the dialog that
appears, select the OK button and the project Gantt chart will be shown. To show the project forecast/actual as
well as the plan, select the “actual” checkbox before selecting OK.

Note that this demo is set up to track the traditional start and finish dates of each activity. In some configurations of
CM+, activity tracking may involve multiple checkpoints (i.e. states) between the start and end of the activity. As an
activity progresses through these states, the Gantt chart shows the progress along the activity’s bar. For example,
a development activity may be configured to move through the states: start draft reviewed implemented tested
finish. If the states have been assigned colors, the actual bars will progress through the assigned colors.

In addition, CM+ permits the use of a Progress chart to demonstrate actual versus planned progress and to project
completion dates based on available planned and actual data. These charts assume that activity planning and
tracking data have been properly filled in for the activities.

Adding a Project Within a Development Stream
To add a new project within a particular development stream, the Projects/Add Project… selection from the
Activities menu can be used. In this tutorial, we will not be adding a new project.

Adding Activities To a WBS
To add new activities to a project WBS, right-click on a parent activity and select Add Activity from the pop-up
menu. A form will appear for adding a new activity. Fill in the various fields and select OK to complete the addition.
For purposes of this tutorial, create an activity within the current project by right-clicking on a.16 and selecting Add
Activity. Fill in the title and some notes and set the assignee as “jones”. The WBS in the tree panel will be updated
automatically. For a browsetree panel, select (i.e. left-click on) the parent activity to see the updated WBS.

Removing an Activity or Activity Sub-tree from a WBS
In this tutorial we do not remove any activities or sub-trees from the WBS. However, if you need to do so, display
the activity you wish to remove in the WBS panel. Right click on it and select Remove Activity. The activity and
all of its members will be removed from the WBS. The activities are not deleted from the system; they are simply
removed from the project WBS. It is possible to add them into another project WBS or to add them back into the
WBS at a later time.

Moving Activities in the WBS
On Windows platforms, you may move
activities around in the WBS by dragging the
activity you wish to from one parent activity to
another parent activity. If the drag-n-drop
capability is not enabled on your platform or if
you prefer not to use drag-n-drop, you may
right click on an activity and select Move
Activity. In the tutorial, we will not be moving
any activities around.

Web Display of a Project
Definition
The project definition may be displayed as a
Web Page generated by CM+. To display the
Project Definition for the current project in a
web browser, right click on a.15 and select
Project Definition. The Web page produced
shows a table of contents at the top and a
numbered WBS structure expansion with full
activity objectives. Selecting an item from the
Table of Contents will move you to the
appropriate section of the project definition.
To change your Web Explorer select Set Help
Browser from the Help menu.

Project definition web pages are convenient for internet/intranet access to project information, especially for those
who don't have access to CM+. Most reports can be generated in HTML format. CM+ can be customized to
update your intranet reports on a regular basis. Note that some HTML format reports contain “dead” links, that is,
links that cannot be followed by your web browser. In these cases, the report generator assumed that you were
running the CM+ Web client which speaks with the Web Server to enable these links.

Viewing Activity Flow
To view the state-based process flow for project
activities, select View Process Flow from the
Activities menu. In CM+ Professional, the
process flow is pre-defined and static. In CM+
Enterprise, the process flow may be modified and
extended with new states, new transitions,
protections and triggers. It is also possible to
configure multiple process flows, depending upon
the type of activity. Note that although multiple
states are configured for an Activity process flow,
only a subset of these states may be configured to
have date/checkpoint tracking enabled (‘start’ and
‘finish’ in CM+ Professional Edition).

Activity states can be customized to add a
descriptive title and a state color. The easiest way
to do this is to use the Process | Schema | Modify
Range Element menu and then select Set Range
Values. This will bring up a display which allows
you to assign titles and colors to each state.
Lighter colors are recommended for best results.

Additional Project Management
Operations
Some of the other operations associated with
projects and activities include:

• Setting Start/End Dates
• Sizing an Activity
• Assigning an Activity
• Prioritizing an Activity

Consult the CM+ How-to documentation to learn how to perform these operations. Additional higher level
operations on entire projects are also possible.

PROBLEM TRACKING
A problem report is raised to identify a non-conformance of a product or process to its specification. In this tutorial
the project manager raises a problem report because the OK button does not work in the Bonus Calculator demo.

Raising a Problem Report

From the Problems menu select Add
Problem… and fill in the resulting form. The
Stream reflects the target stream for fixing the
problem. The Priority should be set as an initial
assessment (emergency for the OK button
failing). This would typically be revisited by the
Product Management team, Problem Review
Board and/or the Change Control Board.

Note that the Product and Stream fields initially
reflect the current development context as
identified on the status bar at the bottom of the
main window.

All of the fields on this form may be customized –
the order, the content, the names, etc. Your
project will, more likely than not, have a different
set of fields available on a problem report form.

Problem Flow

To view the state-based process flow for problems, select
View Process Flow from the Problems menu. In CM+
Professional Edition, the process flow is pre-defined and
static. In CM+ Enterprise, the process flow may be
modified and extended with new states, new transitions,
protections and triggers.

Assigning a Problem

Under the Problems menu, select Assign Problem. As
project manager, you are given the option of assigning the
“owner”, who is responsible for the problem, or the
“assignee” who is responsible for actually developing a fix
for the problem. Select Assignee and then assign the
problem to “jones”, our developer in this tutorial.

At this point in the tutorial, your work as Project Manager is
completed. You may now exit the CM+ session for project
manager Smith.

Problem Dashboard
The default configuration of CM+ includes a problem dashboard which is most easily invoked by clicking on the tool
bar icon corresponding to the Problem Dashboard. To identify the Problem Dashboard icon, roll the mouse over
the tool bar icons until the toolbar tip indicating the Problem Dashboard appears. Select this icon to bring up the
dashboard.

Notice that the dashboard has several different fields and displays. Some of these are used to focus the dashboard
on a particular set of data. The Product and Stream selectors indicate the problems that we're interested in looking
at. The table summary shows us that, in this case, for this product, there are only release 1 problems, summarized
by priority. Clicking one of these summary cells will either bring up a display panel with the details, or will place
those details in the main data panel, depending upon your configuration. The “Priority by Status” graphs shows a
distribution of the problems according to those two factors. Clicking on a bar will zoom into a display panel for the
problems contributing to that particular bar. The “Open Problems” selector allows you to zero in on the description
of open problems without having to go to another panel. The final two graphs show the problem Arrival and Fix
Rates, by month.

Your own project may have any number of customizations added to the Problem Dashboard. From a Project
Manager perspective, this dashboard is intended to show trends, risks and other information that is valuable to
management of the project. A tester may have a completely different view of problems on his/her dashboard,
perhaps oriented towards the task of integration testing of new builds.

Problem Reporting
CM+ provides a number of ways to report on problems, both interactively and through various report formats. The
report generator is itself a cutomizable panel from which details of the report are specified, including format, query
domain, ownership, sorting, field selection and additional report selection criteria. Graphical reports are also

generated in a similar fashion.

From the Problems menu select the Report item. A panel will come up with several reporting options.

The problem report generation may be used to generate problem reports and queries in many different formats.
First select the “Form” format, select “all users” for Who, and in addition to the already selected fields, select “title”
and “notes” (right hand column). Now select Apply (which will keep the report generator up as well, as opposed to
OK which will close it). A Form browser appears with Previous and Next buttons for navigating the forms.
Experiment with other formats and options as well.

Now go back to the Problems menu and select Graph. A similar form appears, but this time to customize a
graphical presentation of data. This time select “all users” (under “Who”) and select the “Show Data Values” option.
A stacked bar graph will appear, show status, based on color coding of the states, within each priority. Click on a
bar segment to explore the problems within that segment.

Additional problem queries and reports are available using the Problem Queries and Problem Reports sub-menus
of the Problems menu.

DEVELOPER ROLE

Developer Overview
The designer or developer is perhaps the most common role in most development projects. For this part of the
tutorial, you will enter the CM+ demo library as user “jones”, our Designer. Select the CM+ Demo Designer from
the CM+ menu under Start/Programs (or run C:\Neuma\sts\bin\sts demo -g -u jones). On UNIX, use the “-u
jones” option when you start CM+: sts demo -g -u jones

Setting a Development Context
CM+ maps your product roadmap (release plans) onto tracked products and development streams. Setting a
development context enables you to control your view of the repository data, and ensures you see the correct
revisions of files and directories. This tutorial assumes the BonusCalculator product in the rel2 stream. Set your
development context by selecting Set Context from the Context menu.

Set Product to BonusCalculator and Stream to rel2. Set the Workspace to a location in your filesystem where you
want to deploy and edit files. After setting your context, the status bar “Dir” field will change to reflect the context
settings.

CM+ will remember your context settings until you change them. When you attempt to select a previously active
context, CM+ will default the WorkSpace to your previously used workspace, and will provide a selection of
WorkSpace settings that you have previously used with the specified Product and Stream.

Identifying Assigned Activities
To identify the activities which have been assigned to you, on Windows, Linux and some Unix platforms, either right
click on your name in the Staff tree and select To Do Activities or click on MyBonusCalculatorActivities in the
Tree Browser panel. On any platform you may bring up the Staff tree using Users/Staff Tree, or you may select My
Activities directly from the Activities menu.

In your own project library, you may find that your To-Do lists are named differently (e.g. MyChangeRequests),
reflecting your own corporate or project processes and terminology.

Identifying Assigned Problems
To identify the problems which have been assigned to you, on most platforms, either right click on your name in the
Staff tree and select To Do Problems or click on MyBonusCalculatorProblems in the Tree Browser panel. On
any platform you may bring up the Staff tree using Users/Staff Tree, or you may select My Problems directly from
the Problems menu. Notice that the problem assigned to “jones” by the Project Manager is now in Jones’ problems
list.

Changing your Workspace
To change your workspace only, select Set Current Workspace under the Context menu. Whenever you start
work on an Update, the current workspace setting will be saved by default as the workspace referenced by that
Update. Files will be retrieved to this workspace and placed in appropriate sub-directories. When you check-in the
Update, files will be submitted from this workspace. This way you can work on different products or streams in
parallel and always submit files from the correct location.

Note that your workspace always starts at the product root (i.e. the product root maps onto the workspace directory,
and all subdirectories are positioned according to the product tree layout).

The Source Tree
The source tree is the file-explorer like directory/file tree found in the
browser portion of the main window. The root of the source tree is
normally named with the product name (e.g. BonusCalculator). In some
cases, you may have multiple source trees visible at once, corresponding
to multiple products in your context. Underneath the root are typically
multiple directories.

In the source tree shown on the left, there is a main product root directory
(/) under which there is a single (project) directory bonuscd, with 4
directories under it. The “source” directory is fully expanded. The default
icon shows that there is a file in the workspace for each file in the source
tree, and the bold text indicates that the workspace file has read/write
attributes. The red checkmark indicates that “bcmove.c” is checked out by
another user. There are numerous indicators to let you know the status of
files in the workspace, including a delta symbol which appears if the file
changes in the workspace from what it is in your current context of the
CM+ repository.

Many operations may be performed from the source tree. You may right-
click anywhere in the tree and ask that that file or sub-tree be Compared to
your Workspace. Or you may ask for a line count of that sub-tree. You
may also deploy source for the sub-tree. Typically, one would right-click to
browse history, check-out a file, or view the revision tags associated with a
file. In our example, we'll right-click on the “source” directory and search
for the word “MOUSE”, by selecting the Search option and typing in the
search term “MOUSE”, followed by clicking OK. CM+ puts up a text
display (or in some cases a text tab panel) to show the lines in the files of
“source” which have the term MOUSE used.

NOTE: You may customize your editor integration so that you may right-click on a search line and select “Go To
Line”, so that CM+ will place you in your editor at the specific line. This assumes that your editor has the capability
to place you at a specific line of the file (e.g. Notepad does not, but Notepad++, and vi,/vim/gvim do). This is a
powerful feature if you don't have an IDE that for this, but it is also in that you may select which portion of the
source tree to search (by right-clicking there) and you may customize the right-click menu to have other actions
besides “Go To Line”.

Deploying a Source Tree
Depending on your tools and their configuration, you
may need the entire source tree deployed in your
workspace or only those files which you plan to
modify. CM+ supports either model. In this tutorial,
the entire source tree will be deployed in your
workspace.

You may deploy your source tree it by right-clicking on
the root of the BonusCalculator tree, “/”, and
selecting Get Source. On some platforms, or
configurations, you may first have to display the tree
by selecting View Context Tree from the Context
menu. Another way to deploy the source tree, or
selected portions of it, is by selecting Populate… from
the Updates/Workspace menu. In the resulting
dialog, you select one or more directories and click
OK. The source code will be deployed to your current
workspace. Now try deploying code by right-clicking
on the tree root and selecting Get Source. A dialog panel with a number of options appears. By default, selecting
no options will deploy the source normally.

The source deployed reflects the source visible in your current workspace. To deploy source code for a particular
build, you may either set your context to that build, or use the menu item Builds | Get Build.

You may use some of the options on the Get Source dialog to change how you retrieve source. Many of these
options are more typical for a single source file. The Output to Display option will bring up a text window with the
source in it. The Prepend Line Revision Info option and the Number Lines options may be used to append
information on what revision each line of the file was added, and line numbers, respectively. You may also override
the native format when retrieving source code.

Fixing a Problem
Go back to the display of Jones’s assigned problems and identify the emergency problem report that was added by
the Project Manager (unable to Collect Bonus/click on OK button). Right-click on this problem and select
FixProblem from the pop-up menu. A new Update form will appear allowing you to define an Update to fix the
problem. Notice that the product, stream and directory reflect your context settings as they appear in the status bar.
Fill in a title for the Update and select OK.

Checking out a File and Branching
The file to be modified in this demo is the “movebutton.cpp” file. Open the Context Tree for Bonus Calculator and
expand the “source” directory. You’ll notice bcmove.c is already checked out (red checkmark or red text) by another
user. When you check out movebutton.cpp it will appear using green instead of red because the checkout is to the
current user. Although you may select Check Out from the pop-up menu on “movebutton.cpp”, we’re going to
select Browse History instead. This brings up a history browser. When expanded fully, notice that a single “rel1”
(Release 1) branch of movebutton.cpp exists, and that it has two revisions, aa00 and aa01.

Because we are working in the “rel2” stream, a new revision in the “rel1” stream will not suffice. Right-click on the
“aa01” revision and select Check Out. The Check Out panel appears asking you to select an Update and Options.
Select the Update you just created and leave the “Get Files” option checked to ensure the correct version is
retrieved to your workspace. Then click OK.

Note that the CheckoutMode in this tutorial is “exclusive” meaning no one else can check out this file in this release
branch until your checkout is completed or cancelled. Some configurations will allow “parallel” checkouts, where
multiple users can checkout the same file revision in parallel, though this requires reconciliation on checkin. And
some will allow “queued” checkouts, where an update can queue to check out a file that has already been checked
out by someone else. The checkout operation will complete when the previous checkout is completed. [Note that
the term “checkout” refers to reserving or registering a file for change. It does not refer to source retrieval, though
this is done with the “Get Files” option.]

Because there is only a rel1 branch of the file, CM+ notifies the user that a branch operation is required in order to
open up a rel2 branch of the file. Branching occurs from the current context by default. Select OK, and CM+
creates a new branch.

Click on the root node of the history browser and notice that there are now two branches, a rel1 “aa” branch and a
rel2 “ab” branch and that the “ab” branch has a single “ab00” revision which is labeled with the current update for
Jones. The shading, which indicates which branch and revision are in your current context, has moved to highlight
revision “ab00” in the rel2 branch. At this point you may close the history browser.

Editing Source Code
Once source code is retrieved from CM+ it may be edited through CM+ or through any external tools. To edit from
within CM+, right-click on the object and then select Edit, or just double-click on the file. Note that the Edit option
will only appear if the file has been checked out (otherwise a View operation – read-only edit – will occur).

On Windows platforms, CM+ will try to use the Windows registry to infer the correct editor. However, if you wish to
override this behavior, the File Class for .cpp files may be configured to specify a different editor. This must be
done through the Administrator or CM Manager role. On UNIX, the edit rule from the file class definition will be
used automatically if one is defined.

If CM+ does not otherwise know what editor to use, the default editor is used, as defined by the “Editor” options
preference. Set your options by selecting Options… from the Edit, Preferences menu.

Any appropriate tool may be used to edit code outside the repository. Typically, an IDE tool is used, such as Visual
Studio. In many cases, it is possible to integrate IDE tools with CM+ so that Check Out and Check In operations
may be done directly from the IDE. CM+ is Microsoft SCC (Source Code Control) compliant, so any Windows IDE
supporting this API can be used with CM+. CM+ also has an Eclipse plug-in for using an Eclipse IDE with the CM+
repository.

In the Source tree of the CM+ demo library, you will notice that movebutton.cpp has a green check mark indicating
that you have checked it out in this development stream. Edit the “movebutton.cpp” file from the source tree.
Locate the line containing “ON_WM_MOVEMOUSE” and comment it out. You may also want to add a comment
there, and perhaps one to the beginning of the file. Finally, save the changes you have made.

Note that in CM+ there is no need to keep a running comment log of changes in a file. CM+ can insert such
comments into the source file without any manual editing.

Creating a Delta Report
To create a delta report of the changes you have made to all of the files of your update (just movebutton.cpp in this
tutorial), select Delta Update from the Updates/Delta menu. You can bring up similar forms in a number of
different ways including: selecting MyBonusCalculatorUpdates in the browser panel and right-clicking on the update
and selecting “Delta”; clicking the large delta symbol in the tool bar; right-clicking on the movebutton.cpp file and
selecting “Delta”. The delta report will appear showing you how many lines there are in each changed file, how
many old and new lines were affected by the change and the specific changes, before and after. Note that just a
few lines of a single file has been modified in this demo example. If multiple files had been modified, all of the
changes in all of the files would be shown and summarized at the bottom.

You may experiment with the various delta options at the top of the panel. For example, change the Context Lines
value from 0 to 1 and hit Tab (or, if a Refresh button appears on the bottom right corner you may select it or hit
enter). Your report will change to show some context around the change, as in the diagram below.

Checking in an Update
To check in the update, select Check In Update from the Updates menu. A panel will appear for you to select the
update. Select jones.2 and then click “Keep files in folder” if you wish to keep the modified files in your workspace.
You may also invoke the check-in functionality by selecting MyBonusCalculatorUpdates in the browser pane, and
then right-clicking on the jones.2 updates and selecting “Check In”. When you check in the file, CM+ automatically
promotes the linked problem record to “fixed”. The green check mark will disappear for the file(s) in the checked in
update (in this case, movebutton.cpp).

Promoting an Update to Ready
Select View Process Flow from the Updates menu. This will
reveal the state-based process flow for updates. In CM+
Professional, the process flow is pre-defined and static. In CM+
Enterprise, the process flow may be modified and extended with
new states, new transitions, protections and triggers. It is also
possible to configure multiple process flows, depending upon
the type of update (e.g. documentation changes vs. code
changes).

Notice that the update has moved to “submit” state
automatically when it was checked in. However, with the
default process, the designer must also promote it to the “ready”
status to signal to the CM manager that it is ready to integrate
into a build. This extra step allows designers to check in code
without it automatically being made available for integration.

In order to promote the update, select Mark Update Ready
from the Updates menu. Select Jones’s update from the list
and click OK. This will promote the update to the ready status,
but it will also check that there are no other updates which need
to be promoted prior to the promotion of this update.

When searching for dependent updates, CM+ looks for both
explicit and implicit dependencies. An explicit dependency is
specified directly on the update. An implicit dependency is an
update that produced an earlier revision of a file changed by
your update.

If any explicit or implicit dependencies are not yet promoted to
ready, CM+ identifies them and warns you to take appropriate
action. The CM manager receives the same warnings when
he/she promotes updates in preparation for a build cycle.

Comparing File Revisions
If you wish to compare two revisions of a file, open the History Browser by right-clicking on the file and selecting
Browse History. Expand the branch of the older of the two revisions you wish to compare and right-click on the
revision and choose Select Delta File. Then navigate to the more recent revision to which you wish to compare it
and choose Delta Vs Selection from the pop-up menu. CM+ will display the differences between the two
revisions. This is useful when looking for all of the changes between the latest revision and the customer’s
revision of the product.

Visual Delta
Once a file has been checked into CM+, its possible to generate a visual delta for the file. CM+ uses the term
“visual delta” to refer to one using a graphical delta reporting tool. These typically give side-by-side delta reports.
Right-click on the movebutton.cpp file in the Source tree and select Visual Delta. Or else right-click and choose
Browse History. When the history browser appears, open a branch, right click on one of the revisions, and select
Visual Delta. This will bring up a visual differencing tool called KDiff3. You may browse through the changes of a
file revision, one by one using this tool. In this example, there is only one or two differences shown. In CM+ it is
possible to configure the visual differencing tool to use any third party tool.

Bulkloading a Sub-Tree
To load in new directory sub-tree and connect it into the product tree, select BulkLoad SubTree from the
Updates/New menu. Point to the root of the sub-tree to specify the FileTreePath, and specify files and directories
to be excluded (e.g. tmp *.o *.obj). Then specify where in the existing source tree the new sub-tree is to be
connected, and finally whether the sub-tree directory root itself is supposed to be connected under the connection
point, or if only the contents under the directory root are to be connected. In the latter case, the sub-tree root and
the connection point are considered logically the same directory. To try this in the demo library, select a directory in
your file system (the more the contents, the longer it will take) and connect it under the BonusCalculator:/docs
directory.

Replying to a Problem Report
Normally when you go through the fix cycle, problem reports will automatically be advanced in status and the
description will get a date-stamped reply indicating the update that fixed the problem. However, there are other
times when it is useful to add information to a problem report, perhaps to clarify it, specify a work-around, or to
answer it without having to do a source fix.

To reply to a problem report, select Reply to Problem… from the Problems menu. Select the problem and enter
the text for the reply. Select “Mark As Answered” only if the problem is not expected to have any other work done
to resolve the problem.

Automatically Creating an Update from Workspace Differences
It is possible to ask CM+ to compare your workspace to your Product/Stream context, and have it automatically
create an Update which reflects the changes in your workspace. For example, if you were on a trip and modified
several files in your workspace, you might want to create an update reflecting these changes and to check them in
on your return. Select Update SubTree from the Updates/New menu to do this. A panel such as the one below
will appear for you to perform this task.

Note that this is not a recommended normal mode for changes. When you work in this mode, others are not aware
of the changes you are making, providing an overall poorer level of project communication.

When you have selected your file sub tree path (i.e. on your file system), and have matched it to a CM+ Directory,
within the appropriate Product Stream, CM+ will attempt to create an update which identifies changed, or new files.
It will NOT identify removed files or moved files. So if you only have some of the files from the sub-tree deployed,
CM+ will assume that the other files have not chanegd (and not that they have been deleted).

Synchronizing Your Workspace
You may need to synchronize your workspace from time to time to collect all changes that may have been
submitted by other users. Do this by following a two step process: identifying the code differences and then
selecting and retrieving the updated files. The first step is done by selecting Code Differences from the
Updates/Workspace menu. Select the file suffix values which you wish to compare between your Workspace and

the Current Context within the library and select OK. CM+ will compute a full delta report for all modified files with a
summary at the end. Leave this window open for future reference. If there is only a specific part of the source tree
you wish to compare, you may select that sub-tree in the Code Differences panel, or you may instead of using
Code Differences, use the source tree right-click function Compare to Workspace. Either of these approaches
will identify code that is different between your current context setting and your workspace.

Now select Synchronize from the Updates/Workspace menu and the files which had differences in your previous
operation will appear. Select the files you do NOT wish to synchronize at this time. It is a good idea to review the
Comparison panel produced earlier as you work through your selections. If you have files checked out for the
current stream, these will likely be pre-checked so that you don’t overwrite them in your workspace. If you
accidentally overwrite a file, you will find backup copies in the workspace (typcially with an X after its name). After
selecting OK, CM+ will present you with a confirmation list of the files to be synchronized. Click OK and the
synchronization operation will pull the files from the library, replacing the revisions that were in your workspace.

You may customize your CM+ user interface to allow more complex synchronization processes, such as those
which might allow you to merge differences between your current context and your workspace.

Developer Dashboard

CM+ includes a number of default dashboards. The Developer Dashboard allows you to scroll through a user's
changes, and to look at the changes performed, delta reports, problems fixed and activities addressed. All
dashboards may be customized to suite a project's requirements. New dashboards may also be added. To access
the dashboard, roll the mouse over the toolbar icons until the Developer Dashboard is revealed by a tool tip.

Select the user “hatt” for this dashboard and feel free to scroll through the updates, or zoom into the details of any
of the records in the display panels found on the dashboard.

WorkSpace Status Dashboard

This section is not part of the demo tutorial, but appears for information purposes only.

The WorkSpace Status Dashboard is used to help analyze the content and state of a user's workspace or a portion
thereof. First available with CM+ 7, the dashboard will have variations that evolve both over time and across
projects. The Workspace holds the source code used for "local" builds, as well as for the edit-compile-test cycles
which accompany such builds. Some terminology:

Source Code: A file which is generally compiled or otherwise used as part of a run-time or build environment.

Workspace: The root directory, and sub-directories, containing source code required for a product builds.

Checkout: Registering a file in CM+ for a change, with an option of retrieving the file to the workspace.

Get: A retrieval operation to place source code in the workspace.

Checkin: The submission to the CM+ repository of an Update containing previously Checked Out files.

Context: The "current" view of repository files in CM+, as specified by the user.

Synchronize: The operation of bringing the workspace in line with the context view.

[Note: An important distinction needs to be clarified because of the different common usages of the word
"Checkout". In CM+, a Checkout operation registers a file for change (i.e. against an Update), typically reserving
that branch of the file until the changes are Checked In. The term used for retrieving source code to the Workspace
is "Get" or "Get Source". A Checkout operation may or may not indicate that source code is to be retrieved.]

Workspace Status Operation
A CM+ user may right-click on any directory in the source tree and select "Workspace Status". This will bring up a
dashboard that outlines the various states of the files in that part of the source tree. The states are identified as
follows:

Context: Workspace file matches (date and code) in current CM+ context.

Missing: File in the CM+ context is missing from the Workspace.

OldRev: Workspace file matches an older revision than the one in the CM+ context.

Later: Workspace file matches a later revision than the one in the CM+ context.

Modified: Workspace file differs from the CM+ context, with changes on top of the context revision.

Merge: Workspace file differs from the CM+ context, and was derived from an earlier revision.

Unknown: CM+ does not know the origin of the file in the Workspace.
The count of the number of files in each of these states is displayed in the dashboard:

These are the various fields of the Workspace Status dashboard:

Workspace: Your current workspace setting, to which this is being applied. (Restart this dashboard if you change
your workspace). This is a read-only field for information purposes only.

SubTree: The sub-tree of your product source tree on which the workspace status operation is being applied. This
may be the entire product tree, but in larger projects, this may result in some significant delays. If you change your
sub-tree selection, you must select Refresh to have the information updated.

Display Selection: This selects the workspace status which will be displayed in the Display area. Whenever you
switch workspace status, all of the files with that status will be selected (for use in Get operations).

Sort: The Display of files is sorted by the Directory tree (same order as in the tree), by filename, or by file type.

Viewing: (currently not used - information purposes only).

Display: This is the set of files in the context tree whose corresponding workspace status matches the Display
Selection. The "Get Selected Files" button works on the displayed set of files which have check marks beside
them.

Action Buttons: There are a number of action buttons which may evolve or be customized over time.

 OK - Exit the dialog

 Cancel - Exit the dialog (not really different from OK - included for GUI consistency)

 Get Selected Files - Dialog for retrieving the currently selected files in the Display area (i.e. same status).

 Modified Details - Dialog showing the Code vs. Meta-Data differences for files of status "modified"

 Merge Details - Dialog showing the various partitions of "merge" files (Meta Data and Code differences)

 Analyze Workspace - Dialog to identify New (not in CM+) files with options to perform on the workspace.

 Refresh - Refreshes the dashboard to take into account workspace, repository or Sub-Tree selection changes.

Note that generally, actions taken in other dialogs may require a Refresh operation before they are visible on the
Workspace Dashboard.

As well as the array of buttons at the bottom of the dashboard, there are also right-click (context menu) operations
that are available to further analyze the workspace files. These include "Browse History", "Get Source" and
"Compare to Workspace" functions, which may be executed on individual files by right-clicking on them.

The "Browse History" operation will bring up a dashboard which shows an interactive display of file revisions in a
scrollable panel, as well as a history chart. On the history chart, you will see the File, the list of Branches, and the

list of Revisions in the currently open Branch. The shading of a single Branch and Revision, indicates that they
correspond to the current context setting within the user's CM+ view. The arrows, if present, indicate the
Branch/Revision which may be found in the workspace. In some cases (modified and merged files), subsequent
modifications may have been made to the workspace file. So, in this case, the arrows represent the revision from
which these modifications were started.

Note that both the Details panel and the History chart are interactive. You may right-click on any item and select
one of the operations to be performed. To compare two arbitrary revisions, right-click on the "old" revision first and
"Select Delta File". Then right-click the "new" revision and "Delta vs. Selection".

Get Selected Files
When the "Get Selected Files" button is clicked, a dialog appears.

This is a confirmation dialog which also allows you to indicate what happens to existing files. The File Count
indicates the number of files that were selected at the time you clicked the "Get Selected Files" button. The
Workspace identifies the root directoy of the workspace to which these files will be retrieved. The list of Files are
shown in a scrollable list. If you wish to change this list, return to the previous dialog first, by selecting Cancel. The
Option field allows you to select between overwriting (i.e. replacing) existing files, and backing up existing files by
appending the "backup" character to them (typically "X"). By default, two backups (X and XX) will be kept. When
you click OK, the retrieval will begin immediately.

 The “Get Selected Files” dialog is shown below.

Modified Details
When you select the "Modified Details" button, a dialog appears showing which files differ in Code, and which differ
only in Meta Data (such as the date stamp, or the identification information).

The files in the "CodeDiffers" list have actual source code differences between the Repository Context revision and
the Workspace revision. You may right-click and select Compare to Workspace for an individual file, or you may
view the code deltas (i.e. differences) for all of the files by selecting the "All Code Deltas" button. The following
dialog then appears.

This will show the set of file deltas for all files and will give a summary at the end. By default, deletions will be
shown in red and additions in green. You may adjust the number of context lines or the number of lines that must
match prior to a change being considered a separate change block. When you do, however, CM+ will recompute
the delta report. In the case a large or a large number of files, this may take a few seconds.

If you select the "Sync Meta Data Differences", CM+ will perform a "Get" operation by bringing up the same dialog
as it does when you click "Get Selected Files" in the workspace status dashboard. Again, the operation will be
restricted only to those files that have been selected in the "MetaDataDiffers" list of the Modified Details dialog.
Files which actually differ in code will NOT be retrieved by the Sync operation. You may do so (and overwrite your

modifications) individually using a right-click "Get Source" operation, or in batch from the workspace status
dashboard, using the "Get Selected Files" button. Note that you may also perform individual Deltas by right-clicking
on a file and selecting "Compare to Workspace".

Merge Details
Workspace files with a workspace status of merge are different both from the current context view in CM+ and from
earlier revisions. The differences may be due to code changes, or to meta data (e.g. date stamp, identification
info). The Merge Details button launches a "Merge Details" panel which further analyzes these files to partition
them into one of three groups: a valid merge may be required; the file matches an Older Revision even though the
meta-data indicates it may have changed; the file matches the Current Context Revision even though the meta-data
indicates it may have changed.

The "All Code Deltas" button presents a code delta report for all of the files in the "CodeDiffers" list, similar to the
one for Modified Details, above. The "Sync Old Meta Deta" button will replace files which match Old Revisions (i.e.
those in the "Old Files list), with those actual file revisions so that the meta data now matches. The "Sync Meta
Data Differences" button will replace files in the MetaDataDiffers list, with current context revisions of those files, to
ensure that the meta data differences disappear.

Right-click on a file in the CodeDiffers list should reveal a Workspace Merge operation. This will merge the current
context with the file in the user's directory. If there is a common ancestor, a three-way merge is performed,
otherwise, a two-way merge is done.

Analyze Workspace
When you analyze a workspace, CM+ goes through the workspace and compares the files it finds with those in
your current context. It ignores files which match the list of excluded files, and otherwise identifies new files and
directories, as well as files that match the context source tree.

The analysis is performed after presenting a dialog panel for specifying the list of excluded files. If you use your
workspace directory as your build directory, you might have exclusions such as *.exe and *.dll. If you allow
backups, either through CM+ or through an editor, you may have exclusions such as *X and *%, depending on
what backup characters are used.

As CM+ analyzes the workspace, it may come across directories that don't match the context source tree. In such
cases it will ask you how to treat them. Perhaps you've created a new directory and moved some files into it. Or
perhaps you've renamed a directory. By indicating what you've done, CM+ can match files from the source tree to
the workspace. Otherwise, it has to assume that the files found in "new" directores are themselves new files with
no prior history. The top line of the Action panel indicates the item that is causing CM+ to prompt for information.
The selector may be used with some of the responses, from which you select one, but is otherwise ignored.

On completion, CM+ identifies the set of new files and directories. You may select files to be deleted from the
workspace. You may also select directories, if empty. CM+ will not update the display until a subsequent analysis
is requested. CM+ also gives you the option of creating an update based on the differences it finds in the
workspace. This assumes that you have first reconciled your workspace to your context. Otherwise, you may find
some unintended files as part of your Update. In such a case, you will need to perform a Cancel Checkout
operation.

Neuma recommends that you check out (i.e. register against an Update) files as you need to change them. This
both helps with the granularity of your traceability, and makes it easier for you and others to track your Update. The
Create Update from Workspace operation is a tool that can be easy to use if you work on sub-trees that are
wholly "owned" by you, so that the workspace sub-tree does not need constant re-basing (i.e. synchronization with
other changes). Prior to using it on a project repository, get a feel for it by using it on a testbed, or on a copy of
your production repository.

CONFIGURATION MANAGER ROLE

CM Manager Overview
The demonstration continues with the CM Manager role. The CM Manager will review the set of updates that have
been readied by the development team, then prepare a Build for System Integration testing.

CM+ tracks Builds as first-order artifacts, with their own attributes, descriptions and state-based process flow. Build
management lets you track and manage an exact configuration of your software without relying on branching or
labeling.

A build consists of a baseline plus a number of arbitrarily selected updates. A baseline is a frozen snapshot of a
specific set of file revisions, whereas an update applies specific changes to that frozen set. In some cases an
update serves only to move files around in the tree. CM+ uses this combination of a baseline plus updates to
determine an exact configuration of your software. The CM Manager’s job is simply to approve changes, whereas
CM+ handles the difficult task of figuring out the product configuration.

With CM+ Build tracking not only can you manage releases but you can also manage patches, variants,
customization and nightly builds. In this tutorial, you will create a baseline and a new build record based solely on
the baseline. You will also compare this build against a previous build defined in the system.

The above diagram illustrates the general build cycle that a CM manager moves through. This cycle applies to
each iteration of each release stream for each product. In CM+ the Changes are defined as Updates.

For this part of the tutorial, enter the demo library as user “black”, our CM Manager. Select the CM+ Demo CM
Manager from the CM+ menu under Start/Programs. On UNIX, specify “-u black” when you start CM+: sts demo
-g -u black

Selecting Updates for a build
First the CM manager will review the updates that have been marked ready by the development team. To identify
the ready updates, choose the Select Updates function from the Builds menu. In the resulting dialog, select rel2
as the Stream, ready as the FromStatus and select as the SelectStatus, then click OK. In the next dialog, right click
on jones.0, .1 and .2 to advance them to “select”. Because the status is being promoted, CM+ verifies that there
are no dependent updates which have not yet been promoted.

Backing Out Updates
When an update is promoted, only to later cause problems in a build, or when an update has dependent updates
which cannot be promoted at this time, it may be necessary to demote an update. To do this, select Roll Back
Updates from the Builds menu. Right click on an update to roll it back. In this tutorial, we do not need to roll back
any updates.

Defining a New Product Configuration
Once the updates are selected, the next step is to align the development stream to include the selected updates.
The align operation tells CM+ to determine the next product configuration based on the changes you have selected.
To do this, select Align Product from the Builds menu. In the resulting dialog, select the BonusCalculator product,
the rel2 stream and the select status and click OK. The product will be aligned to include all changes in the current
stream which are at least at the status select.

The align operation creates a new, open configuration, or if an open configuration already exists, it changes the
configuration to include new revisions. In our example, the open configuration already exists, so the parent node,
source.ab00 is simply changed to include a revised child node, movebutton.cpp.ab00. Changes made in any of the
selected updates may cause additional replacements in the open configuration. When an align is done against a
frozen configuration (i.e. a baseline), you will always see new revisions of directory nodes being created and
replaced in the configuration. The configuration may be aligned multiple times, after selecting additional updates
and/or rolling some back.

Freezing the Product Alignment into a Baseline
Once an align operation has been done, it is possible to freeze the configuration, thereby establishing a new
baseline. Do this for the Bonus Calculator by selecting Freeze Lineup from the Builds menu. It is possible to
freeze only a sub-tree of the product, but in this demo we will freeze the whole tree. Leave the Add Build Record
option checked to allow the creation of a build record corresponding to the baseline.

Strictly speaking, the baseline is itself a permanent record, with all enumerated file revisions being accessible
through the root level, frozen directory revision. However, a build record gives you the advantage of managing the
workflow associated with the baseline as well as tracking attributes such as build type and description. When you
click OK, you will be prompted for an Identifier (an alphanumeric name with no blanks or special characters) and a
Title (brief description). Fill these in and click OK to create the build record (use a simple identifier such as
BCDemo).

Other Reasons for Creating a Build Record
The Freeze Lineup operation is just one case where a build can be created, and is used primarily when a major
release is being generated. More often, for internal builds, a build record is created from an existing frozen
baseline plus a list of updates. The list of updates is completely arbitrary and depends on your change
management practices and the purpose of the build (nightly build, variant, patch release etc.) For more information
see Registering a Build, in the Baselines, Releases and Builds section of the How-to Documentation.

CM Manager Dashboard
The CM Manager Dashboard can be accessed from the Toolbar by running the cursor over the icons until the CM
Manager Dashboard tool tip pops up. Selecting the icon will bring up a dashboard which can be used to look at a
number of current work for a particular stream of a specified product. The product and stream can be modified to
switch between contexts for the dashboard.

Build Flow
Select View Process Flow from the Builds menu to view the state-based process flow for a build record. This
process models a deployment, testing and release cycle. Typically, most builds do not make it through the entire
process to production.

Comparing Builds
CM+ offers powerful traceability functions to support configuration auditing and project reporting. There are two
ways to compare builds. The first is to use the Build Comparison Dashboard. Roll the cursor over the toolbar icons
until the tool tip reveals the Build Comparison Dashboard.

The two selectors at the top of the dashboard are used to select the builds to compare. Select your recently
created build in the left side selector, and “bonuscalc_2” for the right side selector. The other fields will be updated.
The Delta field will only show results when the update selected has had some source code changes. Select
jones.2, the update you just completed, an look at the delta result here. The build comparison dashboard lets you
zero in on changes made between the builds, problems fixed, features implemented, and specific delta reports.

A slightly less convenient, but more comprehensive, way to compare two builds is to first choose Select Builds
from the Builds/Compare Builds menu (or select any of the Compare functions). From the “Select Builds” panel
pick BCDemo as the current build and bonuscalc_4 as the previous build.

You are then presented with a list of the updates (changes) that went in to the new build.

You may click on the headings to see an aggregate of problems, activities, file modifications, etc. Or you may
zoom into a particular record key or field for particular details about it.

You may also pick any of the other comparison functions available under the Builds, Compare Builds menu. For
example, to look at the problems fixed in BCDemo since bonuscalc_4, select Problems from the Builds, Compare
Builds menu. Note that the problem reported for the OK button is in this list.

Creating a Build Delta Report
To look at all of the code changes made between the two builds, select Code Changes from the Builds/Compare
Builds menu. CM+ will quickly compute and display all lines of code modified between the two builds.

WORKING WITH MULTIPLE PRODUCTS
CM+ tracks multiple products, each with its own development team, source tree, builds etc. Products can be
completely independent or dependent sub-products to a main product.

Bulkloading a New Product
To create a new product and bulkload in the source tree, launch CM+ as the CM Manager and use Bulkload from
the Products menu. In the Bulkload New Product dialog, set the FileTreePath by browsing to the root of the
directory tree to be loaded. In this demo you may browse to sts\demo\demo_files under your installation directory
and select WebBonus as the root. The ProductName will be set automatically (based on the root directory name).
Select rel2 as the stream. The ExcludedFiles field is used to specify file types or directories to be excluded from
the bulkload (e.g. tmp, *.o, *.obj). Leave this blank and leave the Skip file on error checkbox unchecked. Click OK
to start the bulkload.

For more information, see Loading in Your Product Code in the on-line How-To Documentation.

Working with the New Product
On completion of the Bulkload operation, the new product will appear in the Products browser. The context will
NOT switch to the new product however.

Set your context to the new product by selecting Set Context … from the Context menu or by right-clicking the
product in the Products tree view and selecting Set Context … Select the product you just added and the rel2
stream. Your view will change to the source tree, updates and builds for the new product.

In this example we are going to treat this new product as a third party add-in to Bonus Calculator and deploy it to
common area for the rest of the development team to use. First find the updates used to bulkload the product by
clicking on MyWebBonusUpdates in the browser panel. There should be two (black.0 and black.1), one to create
the product and another to bulkload the source. Right-click on each and select Mark Ready.

Before aligning the WebBonus product and creating a new baseline, promote the same updates to status of select.
Do this through the Select Updates… function under the Builds menu. Choose rel2 as the Stream, ready as the
FromStatus and select as the SelectStatus. Click OK then right click on each update in the subsequent display to
promote it to select.

Align the WebBonus product by selecting Align Product… from the Builds menu. Freeze the alignment and create
a new build by selecting Freeze Lineup… from the Builds menu, choosing the product root directory as the
starting point for the freeze. Check the Add build checkbox and click OK. After the product tree is frozen an Add
Build dialog will appear. Enter a name and a title for the new build and click OK.

You may now deploy the new build by selecting Get Build… from the Builds menu. Choose the build you added
in the last step and choose a location on the file system to deploy to.

At this point, you have loaded in a new product, created the first baseline and first build record, and deployed the
source for that build record. The next step would be to actually create a build deliverable from the deployed source
code. If your make files are part of the source code, this might be as easy as executing the make files. But there
are many other features of CM+ that you may wish to study to see what procedures best suit your operating
environment and project.

USER AND LIBRARY MANAGEMENT

Adding a User
The project manager may be responsible for the addition of users and assignment of user roles. In some
organizations, this responsibility will fall upon the Administrator of the library. To add a new user, select Add User
from the Users menu. A form will appear with the user’s particular’s to be filled in. The “UserId” field is the user’s
login name for CM+. To enable automatic login, the user ID should be the same as the user’s OS login account or
a single token subset of it. Otherwise, the user will have to specify his or her userid every time they log into CM+.
After the form has been filled in, click OK. The user is added and a dialog appears requesting the roles for this
user. A user’s role determines their access to menus functions as well as their access to commands and data.

It is also possible to add a new user directly reporting to another user by right-clicking on the user to which the staff
is to be added and selecting Add User.

Changing a User’s Roles
To change a user’s roles, select User Roles from the Users menu and then select the user and OK from the dialog
box which appears. A second dialog box will appear. Adjust the roles as required by clicking on the check boxes
and then select OK.

ENABLING MULTIPLE USER ACCESS
The demo library installs rapidly for evaluation by a single user. If you wish to evaluate a multiple user
environment, you may create a separate library or you may modify the access to the demo library to support
multiple users.

Generally, multiple user access is accomplished by giving read-only file system access to the STS installation
directory (typically C:\Neuma\sts on Windows, /usr/neuma/sts on Unix), and providing a transaction server to
provide transaction handling. [In the single user demo environment, the installer was given write access to the
transaction directory – this is not the normal operation. This was to simplify server operation.]

To modify access for the demo library, perform the following:

1) In the STS/demo/demo.sts file, insert the line: set sitemode net

2) In the STS/projects.dat file, make sure that for the txn server, a valid IP name or address is specified that
can be interpreted by all clients.

3) From the administrator account (stsmgr), use the Administrator | TxnServer | Start Net Server button to
start the transaction server.

4) Make sure that the STS root directory has shared read access to every client. On Unix, also make sure
that the files in the “bin” directory have shared execute access for every client.

5) Make sure that all clients have their STS environment variable pointing to the STS root directory. On Unix
platforms, this will happen automatically if clients use the “sts” script found in that directory to launch CM+.
On Windows platforms, the “sts.bat” script will set the STS environment variable to a default value if it is not
otherwise set. So either have clients set the STS environment variable, or better yet, set the default value
for STS in the “sts.bat” script. This must be done in a client independent manner (e.g. use a common
mount point: S:\Neuma\sts, or use universal naming convention, \\servername\C\Neuma\sts). The
default value will replace the C:\Neuma\sts default value normally used in the sts.bat script.

This is the formal end of the Demo Tutorial. At this point, you may wish to contact Neuma to determine how you
might proceed to either acquire licenses for your project, or, if you already have them, how you might set up your
own project library.

Additional notes are included below for some common operations you may wish to perform after your demo
evaluation is completed.

DEPLOYMENT STRATEGY FOR CM+

Once initial evaluation of CM+ has been completed and a decision has been made to acquire CM+ for your project,
there are a number of steps that must be taken to deploy CM+. It is expected, though not absolutely necessary,
that a Neuma support person will spend 2 or 3 days on site, helping you with your initial deployment and on-site
training. Unless you have complex requirements, such as transferring all existing revisions from your existing CM
tool, or extensive modifications to the out-of-the-box process that need to be completed before user training, you
should not require extensive consulting and implementation services from Neuma.

Deployment consists of seven basic steps:

1. Understand the scope of CM+ functionality you wish to use initially

2. Identify initial projects that will use CM+, including, if applicable, projects across multiple sites.

3. Install CM+ on the target server(s)

4. Load in your existing data (apart from files)

5. Load in your existing software product baselines

6. Adjust the Pre-defined CM+ processes and user interface

7. User Training

Steps 1 to 3 should be done prior to visits by Neuma. As well, preparation for steps 4, 5 and 6 should be done prior
to a Neuma visit. If you wish, you could attempt these steps on your own, but you might want a bit of training
before trying to adjust your processes and make any associated user interface changes. Step 7 includes both end
user training and CM manager training.

These steps should be used as a guideline for deployment. Once you have made a decision to purchase, you
should work with Neuma to ensure that deployment will be both low risk and swift.

Scope of CM+ Functionality

The first step in deploying CM+ is to decide which parts of CM+ are going to be used initially. Neuma recommends
the use, at a minimum, of Problem Tracking, Change Management, Version Control and Build Management. We
also recommend at least very basic Activity Management. This could be in much the same form as for Problem
Tracking (i.e. activity title, objectives, priority, [target development] stream, owner and assignee), or it can be more
elaborate if you prefer.

The fact that you use Problem Tracking or Activity Management initially will not increase the learning curve
significantly. Users will most likely just see their "To-Do" lists and click on them and select operations from the
objects displayed (e.g. Fix Problem, Reply to Problem, Implement Activity). These will lead them through to the rest
of the Change Management functions while ensuring traceability.

You may want to delay extending your processes into new territory initially (other than the above) unless your
processes are already well understood by the development team. For example, if you're already using
Requirements Management, but doing so by publishing a spread sheet, it might be good to move this function into
CM+ sooner than later. You may even wish to delay Change Management and just start out with a simple Problem
Tracking to get your users used to the tool. However, if they are not doing a lot of Problem management, that might
not help.

When considering the scope of CM+ functionality, it is important to identify any functionality that you have not had a
chance to evaluate. If this is key functionality for your site, it's important that you understand how it works. Most
CM+ functionality is highly configurable. But some is much less so. For example plug-ins or interfaces to other
tools, which are restricted to working with 3rd party interfaces, will naturally have a lower level of configurability. In
any event, make sure key functionality meets or exceeds your expectations before committing to it. If there are
areas that need improvement, discuss this with Neuma as Neuma is usually in a position to address your
requirements in a priorty fashion.

In any event, remember that CM+ has been designed so that both the process configuration and the user interface
can easily be changed over time. This allows you to select an appropriate starting point and move forward from
there over time.

Identify initial projects to use CM+

One of the more difficult decisions is to decide which projects are going to be the first to use CM+. We recommend
selecting projects where the participants are well suited for helping with the migration of CM+ to other projects. You
should expect very little disruption in your migration from your current CM methods to the use of CM+ (unless
you're making sweeping process changes at the same time, in which case there will be some process learning
curve). However, we would also recommend that you select projects that are at reasonable cut-over points (e.g.
end-of-release, new project, lull in development, etc.).

Although CM+ has been designed to match most projects well, not all projects will be a perfect match for CM+. For
example, a combined hardware/software project may raise more issues than a pure software project. When
considering your initial projects, select an initial one that can be deployed easily. Leave more difficult projects to
subsequent deployments. This allows you both to improve your training in CM+ before having to address more
difficult issues, and provides a successful model for use in other projects. And remember that the difficulty level is
not often a technology factor, but is often a personnel factor, whether on the management side or with the team
member buy-in (e.g. resisting change or familiarity with older less functional tools).

Install CM+ on the target server

Neuma recommends a Windows, Linux or Solaris server for CM+, although any Unix server will do (Windows, Linux
and Solaris have the most advanced user interfaces at this point in time). The power of the server is not really
important until the number of users rises above a couple hundred, provided that the server is not already nearly
fully saturated with other applications running.

Neuma also recommends that the server is one to which your clients have read access through the file system (e.g.
NFS or SAMBA, or native Windows networking). This eliminate the need to have to maintain multiple CM+
environments (including customizations and upgrades), and provides for a single machine install operation (instead
of an install operation for each user workstation).. Instead, a single environment per site should be sufficient.

Finally, Neuma recommends installing CM+ using the default settings to simply any support communications.
However, this is not necessary and will not affect operation or performance. Installation should be a 5 minute
process.

Loading in your data

There are a number of steps to loading in your existing data, but they are all straightforward. Remember, when you
do bulk loading of data, it is a good idea to first disable your Automatic Save ("autocommit") feature, using Edit |
Preferences | Options (and disable the "Automatically Save" option), and to view the results before you explicitly
commit them to the repository. Generally, it's easier to fix up your data entry file than to have to re-do or correct
parts of it. If you have errors or are not satisfied with your results, use the File | Cancel menu item to cancel your
transaction and to try again.

You may have data in other repositories that you wish to continue to maintain in the other repositories for any
number of reasons. We first point out that having the data integrated into a single library will give you much more
capability than having it separate. This includes both data navigation and handling cross-application process
issues (e.g. problem promoted when update submitted). So in these cases, you may want to consider one of a
number of options including:

• Migrating the data to CM+

• Replicating part of the data in CM+ (e.g. title, priority, assigee, status), and maintaining that replication.

• Exploring the level of integration between CM+ and your other tool. This will likely be more expensive and
will not result in seamless integration (and hence will be less user friendly) but may be your hard
requirement.

Load in your Users

The best way to load in your existing users is to create a text file in tabular fashion. You'll probably want the
following fields to start. You can add in others later. (Note that you can always modify the user data schema at any
time.)

Userid: their Unix/Windows login ID. However, if their login id has dots or spaces in it, we recommend
taking the part after the space (eg. "smith" for John Smith). Traditionally userids are all lower case, but
you may use mixed case if you wish.

Name: Their full name in "quotes"

Title: Perhaps their current position in the organization, in quotes

Phone: or Extension: Their current phone number and/or extension. Note that the current CM+ application
configuration requires that a 0 or 1 is the middle digit of the area code. So you may wish to leave this field
out if you have phone numbers with modern area codes (not x0x or x1x), or if you have international
numbers. You can change the configuration later to support these (e.g. use a numeric string field).

Staff: A list of user ids (in quotes), defined higher up in this file, which are members of this user's staff

So for example, you might have a file, named "users.dat" such as:
jones "Davey Jones" “Application developer" 2133
ford "Gerry Ford" "Process Engineer" 2216
black "John Black" "CM Manager" 2214 ford
smith "Joe Smith" "Application Manager" 2210 "black jones"

Then if you execute the following command, it will load in these users:

 runfile users.dat {add users (name title extension staff) -data '^1;^2;^3;^4;^5' }

it will add in all of these users.

Load in your Current Activities/Tasks

Similar to the Users loading, you may add in your initial set of activities. These would normally be dumped out of
some existing spreadsheet or database. So for example, "acts.dat" might look like this:

"Creation of plug-in option 1" hi ABC rel4 smith jones
"Creation of plug-in option 2" med ABC rel4 smith jones
"Plug-in creation" hi ABC rel4 smith smith
"Enhancement of Update Dialog" hi ABC rel4 smith ford
"Release 4 Activity WBS" hi ABC rel4 smith smith
...

You would then execute a command such as:

 runfile acts.dat {add acts (title priority product stream owner assignee) -data '^1;^2;^3;^4:^5;^6' }

CM+ would then run that file and add activities to your repository, assigning activity numbers to each of them. You
could subsequently drag and drop the activities onto one another to form the WBS (work breakdown structure), or
you may choose not to use a WBS and just view your activities based on release and priority..

Load in your Current Set of Problem Reports

Loading in problem reports is very similar to the above example. You might have the following "probs.dat" file:

"Plug-in 1 crashes when configuration is minimal" hi ABC rel4 smith jones
"When default left blank, unexpected behaviour" med ABC rel4 smith jones
"Typo on page 4 of the user guide" low ABC rel3 smith jones

You would then execute a command such as:
 runfile probs.dat {add probs (title priority product stream owner assignee) -data '^1;^2;^3;^4:^5;^6' }

Load in software products

Generally, but not always, all software controlled by the same release time-lines (i.e. sharing the same product road
map) should be treated as a single product. A single product in CM+ may have multiple deliverables (e.g. client
software; server software). The note in the "Loading in your Data" section on disabling automatic saves applies
here as well. You'll probably want to commit your steps at various checkpoints (e.g. every time a bulkload
operation is completed and you've reviewed it and are happy with it). In the case of software, you may want to do a
few trial runs and look at the resulting trees to see if they turned out the way you wanted. This is often best done in
a parallel test library. It's sometimes easier to change the original input data than to change it in the repository.
However, this is not always the case. So experiment.

Loading Latest Baseline Only
To load in the latest baseline for each product, use: Product | Bulkload | Load Product Tree

Repeat this operation for each product to be loaded. At a later time you can worry about whether or not some
products should be handled as sub-products of other products. Browse to the root directory to be loaded for each
product. By convention, and to help minimize conflicts, the product name is specified as a fairly compact, all
uppercase name with no special characters or blanks. Examples: MYPRODUCT MSWCLIENT MSWSERVER
MYSQL.

Note that each product tree must have a single root node. If you have several deliverables in the same product,
they might be grouped under this root node. If you have some products that don't have the source available for
bulkloading at this time (for whatever reason), you may load those sub-trees in at a later time using the BulkLoad
SubTree function found under the Updates menu (New sub-menu). However, if you want these to be part of the
initially loaded baseline, you will have to add these in before you freeze the initial baseline.

Generally, it's a good idea to freeze a baseline as soon as it's been (bulk-)loaded in. This gives you a permanent
record of what was loaded. You may freeze a baseline by either right-clicking the root of the tree and selecting
Freeze, or by using the Builds | Freeze menu item. Optionally you may add a build record as part of the freeze
operation to make it slightly simpler to compare future builds to this baseline and to make it slightly easier to create
your next build in the same release stream. However you can always compare a build to a baseline or use the Add
First Build menu item to create your first build off a baseline.

As part of this, you should establish a build naming convention. CM+ gives you a starting point for default build
names, but this may be modified to suit your preferences.

Loading Multiple Baselines of a Product
Load in the earliest baseline for each product using: Product | Bulkload | Load Product Tree

Subsequent baselines may be loaded in as subsequent revisions of an earlier baseline, or as a new branch off an
earlier baseline. However, the earlier baseline should be frozen prior to loading in a subsequent one. Generally, if
you are loading the earlier baseline for reference purposes only (i.e. no more development on them), you may load
your next baseline on top of it. If you are loading old baselines to continue support on them, only baselines which
supercede others, from a support perspective, should be loaded on top of the superceded baselines. An actively
supported baseline should maintain itself as the tip baseline of a branch. Subsequent baselines should be added
into a separate branch or branches, again, according to the support requirements.

So, for example, if 6 baselines of product ABC are being loaded, rel1, rel2-1 rel2-2 rel2-3, rel3-1 and rel3-2, you
would likely want to continue support of rel1, rel2-3 and rel3.2. So you would load in re1 baseline in stream rel1,
then load rel2-1, -2 and -3 all into the rel2 stream, and then rel3-1 and -2 into the rel3 stream. This would give you
the six baselines arranged as follows:

ABC
 ABC.aa rel1 from -
 ABC.aa00
 ABC.ab rel2 from: ABC.aa00
 ABC.ab00
 ABC.ab01
 ABC.ab02
 ABC.ac rel3 from ABC.aa02 (or ABC.aa01 if it were branched off earlier, and hence loaded prior to ABC.aa02)
 ABC.ac00
 ABC.ac01
 ABC.ad rel4 (new development would start here)

After loading ABC.aa00, you would freeze that baseline, and then use the:

 Products | Bulkload | Analyse Tree Revision, and
 Products | Bulkload | Load Tree Revision

menu items to load in each successive baseline. You would specify the appropriate stream for each load
operation, and do your best to help with the Analyze step, where CM+ will try to reconcile newly added or moved
directories and/or files to their positions in the previous baseline to maintain better history traceability.

Adjust the Pre-defined CM+ Processes and User Interface

CM+ comes pre-customized with a fairly reasonable set of processes. However, you are likely going to want to
tweak these processes. We recommend that you first view the process flow diagrams (Process | Process Flow |
View State Flow) and identify the changes you might like to see. Keep in mind that there may be a few states that
are not so easily configured as they are referenced in various triggers, rules, scripts, etc. But these are few and
generally will not need to be renamed.

Other state flow changes can be identified and Neuma can review these changes and either apply them or help you
to apply them. Once you have identified your candidate changes, Neuma can likely make the changes in a few
minutes to a few hours. Process may be modified at any time, it does not have to be perfect to start. What we do
recommend is that the process that affects most of the users be near perfect so that there is not the need for
significant incremental process training for your users.

You may wish to use the process flow diagrams to inspect and possibly adjust the process flow in CM+. There are
two ways to do this. One is to adjust the process flow in the "schema" files (see the bottom of the .sts files) where
they are initially defined. This will allow you to define the schema for any new libraries you may create in the future.

A second way is to adjust the process directly in the library using the process flow diagrams for each type of object.
In this way, you are affecting only the processes for the specific library that you are adjusting. When you make your
adjustments, you can export the changes for one or all modules using the Process | Schema | Dump... buttons.
These can then be placed in the schema directory for use during the creation of other libraries.

The process definitions also involve things such as high-lighting (criteria and colors) and documentation of symbolic
range elements (e.g. Priority "hi" means that "it must/should be addressed before the next release"). These you
may deal with at a later time when you're fine-tuning your CM+ library.

You may also wish to tweak the CM+ user interface. This will likely involve adding and/or removing a few menu
items, to-do lists or other items from each role. CM+ default roles are most easily modified through graphical user
interface (GUI) configuration. The GUI configuration affects who sees what menus, what's in each menu for each
role, what menus are defined, what tree browsers and to-do lists appear in the top left window, and what the
contents of each of the system's dialog boxes are.

Normally there are few changes. For example, one customer may prefer to retrieve files to the workspace by
default when checked-out, while another may wish the default does not retrieve them. You may want to pre-can a
couple of reports or metrics that aren't already available, or you may wish to simplify the menus for certain roles.
These are all fairly straight forward operations that normally (unless you require extensive changes) will not require
additional consulting costs from Neuma. The GUI can be customized by role, or even at a finer level (e.g. user)
where it might be necessary in some cases.

Some customizations are easy to perform without affecting existing Neuma-supplied GUI configuration files. This
makes it easy to incorporate future advances in Neuma's GUI configuration (although you're always free to ignore
future changes to the GUI configuration). Other changes may need to be re-applied with each release of CM+.
The CM+ merge facility can be used to automate most of this work.

Yet in other cases, you may wish to add additional fields to your data schema as part of your initial customization.
These might be necessary to define your process or user interface more specifically. As will all other changes,
these may be done prior to deployment or at any time subsequent. Some customers perform continuous
improvements, while others like to save them up and hold a user session when a significant number of changes are
being made.

User Training

The last part of the deploy procedure deals with training your users. Neuma offers training courses on the basics of
using CM+. There is a 1/2 day user course which covers Problem Tracking, Change Management/Version Control
and Context/Workspace Management (plus a touch of Activity Tracking). This is intended to be customized to each
project as necessary. It can be delivered by Neuma, or can, through the Training Kit, be licensed for delivery by the
customer. The course should also be customized to work with a copy of your populated repository, although it can
run on Neuma's default training library.

Training of Power Users is a full day course and covers more of the power features of CM+. It allows users greater
flexibility in exploring CM+ and expanding their knowledge of CM+ capabilities. The goal here is for power users to
gradually, over time, pass on the features they find most useful to their peers who have had minimal training.

The other aspect of training that should be completed up front is the Configuration Management and Administration
course. This is a two-day course and it is recommended that at least two personnel take the course so that they
can spare off one another (vacations, sickness, departure). That being said, once the basic set up of the CM
process is completed (e.g. setting up nightly compiles to run automatically, etc.), the CM and Administrator jobs will
be a part time effort, and might focus initially on bringing new users on board with CM+. It will also involve
interaction with Neuma for specific support queries and customization requests.

Up and Running

At this point in time, your CM+ library(s) for the trained user base should be up and running. If you need to
immediately provide CM+MultiSite capability, a few simple steps are required to replicate an initial checkpoint of
your library for use at other sites. Once the replication is complete, your initial site can continue running and your
other sites can be brought on-line as required. It is recommended that you run at least one other site to provide a
warm stand-by disaster recovery. Neuma provides a specially priced server that can be used only for disaster
recovery (i.e. no users are allowed at the site until it is switched to become an active user site).

Neuma recommends having a Neuma consultant on site for 2 or 3 days for your initial start-up and training, but this
is not essential. Keep in mind, however, that switching to a new tool is a significant change for your team, and
anything that can be done to make the transition easier is well worth it. Neuma's consulting rates are priced to
make this affordable. If you require support at any time, Neuma can be reached most effectively by email at
cmsupport@neuma.com, or through direct telephone support.

CONVERTING TO CM+MULTISITE
(Note licensing is done independently for each site)

These instructions assume that you have already created your library running in "single site" mode. CM+ MultiSite
requires that you have fixed IP addresses assigned to each server machine.

It also assumes that you have the same versions of CM+ running at each site (i.e. for CM+ MultiSite, you need to
install CM+ at each site, on the server machine). You should verify that you can use the demo library at each site
before proceeding. This ensures that your CM+ MultiSite installation is working properly.

When you convert a library to MultiSite mode, you will:

◦ Configure the library for use as a CM+MultiSite library (including shutting down the servers when
instructed)

◦ Create a synchronized image of your library for transport to the other site(s).

◦ Restart your library on the original site (normally the master site)

◦ Transport your synchronization images to the other site(s)

◦ Startup your library on the other site(s)

The configuration will involve the following files (STS stands for your CM+ root installation directory):

STS/<libraryname>/stssites - a new file to be created.

STS/<libraryname>/<library.sts> - your library preferences file

STS/projects.dat - your registry of libraries

Note that if you are doing a substantial amount of initial data fill in a library, it is usually quicker to do so prior to
conversion synchronization. This results is less data transfer during bulkload operations. It may be beneficial to
discuss this with a Neuma representative.

To convert the library to multi-site, you need to perform the following:

(M) At the MASTER SITE

(where your library resides already)

M1. Create an "stssites" file (see below) in your LIBRARY ROOT directory, "STS/<libraryname>". Specify the
same port in the stssites file as you specified for the transaction server in the projects.dat file. Otherwise, you will
need to change both files.

M2. Stop your servers and insert the line "set sitemode multi" in "<libraryname>.sts", replacing any other line that
"set sitemode".

M3. Optionally modify your port number in your projects.dat file (if you did not keep the same port you had
previously).

M4. Create a site image for your library. To do this, with all of the servers stopped, zip or tar up the entire library
directory. We recommend that you identify this "archive" by appending a date stamp, or the current transaction
session/id numbers shown by the status command.

M5. Now restart your servers using the Administrator menu and verify proper local site operation. For the Master
site (on which are are currently working), "Administrator | TxnServer | Start MultiSite Master". After waiting a few
seconds, verify that the "status" command shows "multi".

M6. Ship your site image file to your slave site.

(S) At a new SLAVE SITE

[at any time before you do a Txn Session creation, and typically within a few hours]:

S1. Install the same version of CM+ as at the Master site (or perhaps zipped from the master site)

S2. Unzip your library into the STS directory so that it parallels the Master site.

S3. Edit your projects.dat to reflect the local slave site. We recommend that you use the same txn ports for a given
library at all sites, but this is by no means required. It just eliminates one degree of potential confusion.

S4. If you have fixed user client licenses, you may wish to assign differnt users at each of your sites. This can be
done by modifying the "fixedlic.users" file at each site (one user per line), or by using the "Administrator | Licenses |
Set Fixed Licenses" menu item. This can be done at this time or at a later time.

S5. Start up your servers using the Administrator menu and verify proper local site operation. For a Slave site:
"Administrator | TxnServer | Start MultiSite Slave". After waiting a few seconds, verify that the "status" command
shows "multi".

“stssites” File

CM+MultiSite setup requires a configuration file named "stssites" in your library root directory (e.g.
C:\Neuma\sts\demo\stssites). This file could use a numeric IP address or a domain-name based address. Each line
contains the following items:

SiteName: The name of your site - a single alphanumeric token

Master/Slave: One site must be designated the master site, and the others designated as slave sites.

IP Address: The IP address of each server machine. Ideally these are named the same across all sites.

TXN Port: This port number is the same as specified in the "projects.dat" file for the txn port.

Local Txn Directory: The directory, local to each site, containing the library transaction directory.

Fields are blank or tab separated.

The txn directory path is the local path to the txn folder of the library on each site. If may be specified using forward
slashes only (as directory separators) or using the host convention for directory separators.

The "stssites" file should be identical on all sites. However, it is allowed for slave sites to omit other slave sites if
convenient. When the synchronization image is created, the stssites file will be in it so that it is copied to the other
site(s).

*SITENAME M/S SERVER-IPADDRESS TXN-PORT LOCAL TXN DIRECTORY
richardson master satellite.adva.com 9450 C:\neuma\sts\mslib\txn
china slave chinacm.adva.com 9450 /chinaapps/neuma/sts/mslib/txn
texas slave houston.adva.com 9450 C:\neuma\sts\mslib\txn

See the CM+MultiSite Administrator Guide (Help | CM+ Documents | CM+ MultiSite Guide) for additional
information.

CM+ MultiSite Verification

When your master and slave sites are both up and running, you may verify operation of the sites by committing a
simple transaction from each site, and verifying that it has completed at all sites.

You will notice the following files in your txn directories.

MASTER: queue.log master.index <slaveN>.index

SLAVE: queue.log master.index queue.index

The contents of these files should be shown to you if you perform: Administrator | TxnServer | MultiSite Status. If
this takes longer than a few seconds or returns invalid data, you may have a problem with your MultiSite setup.

In the above example, the master, "doc", has sent out 2056 messages from its queue. Slaves "dora" and "doc"
have both received all of the messages. As well, "dora" has sent out 2 messages, and "tom" has sent out 1283
messages to the master site.

The above screen contains similar information from the File | Library Status menu item, and shows the site mode,
name and level (multi, tom and slave). It also shows the content of the stssites file.

NOTES

Upgrades to all sites should be done at the same time to ensure libraries don't diverge.

Txn session creation must be done at the same time at all sites in a strict order. For Unix-only sites, this should
happen naturally. Windows servers will sometimes not allow a txn session creation to properly complete because
of process references to the txn directory. When this happens, manual intervention may be required to complete
the operation.

CM+ MultiSite Detailed Instructions

To convert a single site CM+ installation to CM+ MultiSite, do the following:

• Create your "stssites" file, filling in all site entries, each txn directory relative to its own site.

• Stop your current transaction server (Adminstrator | Txn Server | Stop Net Server) and Library Server
(Administrator | Stop Server)

• Change the sitemode in your "<library>.sts" file (e.g. c:\Neuma\sts\mslib.sts) to: set sitemode multi
[previously this was net or nfs or absent]

• Zip or Tar up your library directory.

• Start up the library server: Administrator | Start Server

• When you restart your transaction server, perform Administrator | Txn Server | Start MultiSite Master on the
master site (you will use Start MultiSite Slave on the other site(s)).

You are now running CM+ MultiSite with a single site. Your slave sites may be started at any time prior to your next
"txn session" creation. They will catch up from this point in time as long as the sites are already defined in the
stssites file.

Send the library zip/tar to the slave site(s). When a slave site receives it, proceed as follows:

1. Either unzip it at the new site, or

• Install CM+ (same version as at Master) and install the site specific license key file

• Apply any "coms" or "gui" file customizations you have made to your master site to the slave.

• Unzip/untar the library into the "sts" directory of the CM+ installation root

2. Modify the projects.dat file to specify the correct IP address (and port if using a different port number -
recommend using same ports across sites for a given library)

3. Startup your slave serversm either through an "stsstart" script or manually as follows:

• Start up the multisite server: Administrator | Txn Server | Start MultiSite Slave

• Start up the library server: Administrator | Start Server

• Start up the license server if you are using floating licenses (Administrator | Licenses | Start License
Server). Otherwise, select the users at the slave site who are fixed users using the Adminstrator | Licenses
| Set Fixed Users

CM+ MultiSite Transaction Server
The CM+ MultiSite Transaction Server is started/stopped on Unix as follows:

 Start Master: $STS/bin/txnserv <libraryname> -m

 Start Slave: $STS/bin/txnserv <libraryname> -s

 Stop Master: $STS/bin/txnserv <libraryname> -m -k

 Stop Slave: $STS/bin/txnserv <libraryname> -s -k

Windows has a more complex structure due to the way in which it spawns processes when a new connection
appears. On Unix, a new process is spawned as needed to serve a connection. On Windows, separate processes
are available for txn server interaction with the client and txn dequeuing operations, for interaction between sites.

The following options can be used with the transaction server batch file: %STS%\bin\txnserv <libarayname>
<options>, where options are as follows:

 -m -t starts master txnserver only (client interaction)

 -m -f starts master dequeuers only

 -m -f <site> starts master <site> dequeuer only

 -s -t starts slave txnserver only

 -s -f starts slave dequeuer only

 -k will stop all processes

"queue.stop" in the txndir will stop all dequeuing processes. "<site>.stop" in the master txndir will stop dequeuing

process for <site>. All .stop files will remain until txnserver queues restarted

TheTxnServer menus use a different user interface for starting and stopping CM+ MultiSite, with separate menu
items for Master and Slave sites. Finer granularity functionality is supported through command line invocation.
Automatically named .log files are created for dequeuers: <site>.log (on master) or slave.log. Txnserv.log is for the
txnserver (site message server) only.

To start up the Master multisite transaction servers on WIndows, the following STS command is executed:
 runfile @libdir/stssites \+
 {if $^take 1 ^1 -not -eq $*; \+
 if $^2 -eq $master; \+
 oscom @stsbin^txnserv @library -m -t; \+
 elsif $^2 -eq $slave; \+
 oscom @stsbin^txnserv @library -m -f ^1; \+
 end; \+
 end }

This command loops through all of the entries of the stssites file and starts a (master) txnserver process and one
dequeuer process for each slave site. The Slave side has a simpler command structure:
 oscom @stsbin^txnserv @library -s -t; \+
 oscom @stsbin^txnserv @library -s -f
This is because it only has to dequeue messages from the Master site and from its own clients.

Key Log Files for CM+ MultiSite

There are a number of log files that may be used in the case of trouble-shooting CM+ MultiSite. These include the
following:

Log Files:

 txnserv.log (and txnserv.logX) - transaction server log files.

 <site>receipt.log [slave only] - a list of messages received by that site from the master

 slavedq.log [slave.only] - log file for a slave dequeue process

A number of other files are used to drive the transaction server operation. These files should not be locked, as they
may be changing frequently in a CM+ MultiSite environment.

Live transaction server files:

 queue.log - Live file - do not write lock this file... list of transaction messages sent to the master/slaves.

 *.index - Live Index files: queue.index, master.index, <site>.index

NEUMA SERVICES

There are multiple server programs involved in the use of CM+. These include the License Server, the Transaction
Server, Query Server, and the Library Server. The latter 3 of these may have multiple instances running, such as
one or more per library. These processes may also have pre-conditions to starting. For example, a library server
must not start if there is an “inservice” file in the library directory, except on a re-boot.

CM+ servers may be started and stopped manually, using the Administrator menu items. Such server processes
will automatically terminate should you log out of Windows. This is a reasonable thing to do when just doing
evaluations of the software. However, once CM+ is running in production, it is preferable to have permanent
servers running, which can be automatically restarted after a system reboot. The NeumaServices.exe in the
STS/bin directory is used to install Neuma Services.

Neuma Services provides a Windows capability which is essentially is used to "execute" server start-up and
shutdown scripts. Script execution is simulated using Windows batch files to start or shut down the services. The
fact that the execution is simulated means that each line is executed in sequence, without a "script environment" for
script local variables.

There are two command scripts which are used to control these services. These are:

 StsStart.bat - Starts the STS servers after a re-boot or after an StsStop operation.

 StsStop.bat - Ensures that the Servers are Shut down and ready to be restarted.

Each of these batch files contain simple commands used to start and stop the servers. The example below
assumes that the demo library needs a transaction server running and that floating licenses are being used so that
the license manager is required.

StsStart.bat
 del %STS%\demo\inservice
 del %STS%\demo\shutdown.sts
 start /min %STS%\bin\licserv.bat
 start /min %STS%\bin\sts.bat demo -s
 start /min %STS%\bin\txnserv.bat demo

StsStop.bat
 echo shutdown > %STS%\demo\shutdown.sts
 %STS%\bin\licserv –k
 %STS%\bin\txnserv demo –k

If you had multiple libraries operating on your server, you would include all pertinent start-up and shutdown
commands in these two files.

The Neuma Services start up after a system reboot and runs all of the commands in the StsStart.bat file. If it is
necessary to shutdown the service, the StsStop.bat file is effectively executed. Because of the occasional need to
shutdown the CM+ servers (e.g. moving to a new release) and the robustness of the servers, the service does not
attempt to restart the processes on its own if they have been terminated.

The NeumaServices.exe image is used to install or remove the Neuma Services. With no parameters, the CM+
services will be installed and the services will be started up, according to the contents of the StsStart.bat file in the
STS\bin directory (where STS is the STS root directory, a.k.a. the CM+ installation directory). With a single “-k”
parameter, the services will be stopped using the StsStop.bat file. With “-k -u” the services will be stopped and
uninstalled. Note that if a library server is involved in a long transaction, the servers may take a while to shut down.

Although you may wish to install a service to automatically start your CM+ servers on your server box, we
recommend that you defer this step until you have completed verification of your environment.

Neuma Services Special Considerations

These notes cover special conditions with respect to starting NeumaServices.exe on Windows Server
2000/2003/2008 and Windows 7 operating systems. Note that Neuma's 32 bit binaries work on Win2008Server
which is a 64 bit OS.

Windows Server 2000:

A user other than Administrator but with administrator privileges must be specified in the services.msc applet

Note: When adding or modifying Windows Users/Groups you must log on to that account before changes are
recognized by the system.

Windows Server 2003:

Only the Windows Administrator account can initially start it. The default LocalSystem account fails as it does not
have the rights to create the service.

Once the service has been created, it is added to the Windows Service Control Manager (SCM) database. Only
then can LocalSystem start/stop the service via the services.msc applet.

Use the Windows MMC snap-in (services.msc) and specify the user Administrator. After that, LocalSystem can
handle the automatic startup at system boot.

Windows Server 2008:

Similar to Win2003, use the services.msc applet and change the default user. The default LocalSystem account will
fail and you must specify a user who belongs to the administrators group or the Administrator user.

Windows 7:

Similar to Win2003, use the services.msc applet and change the default user. The default LocalSystem account will
fail and you must specify a user who belongs to the administrators group.

Neuma Servers on Unix Platforms

On Unix and Linux platforms these servers may be started manually or from the Unix boot initialization code. It is
recommended that you use the "stsstart" and "stsstop" shell scripts, found in your STS/bin directory, to control start-
up and shutdown of your libraries on Unix. Typical Unix commands for stsstart and stsstop are shown below.

E.G. Filename: STS/bin/stsstart
#!/bin/sh
STS startup script (stsstart) DO NOT RUN AS ROOT. RUN AS LIBRARY OWNER
STS environment variable must first be defined or will be extracted from path of $0
if [X$STS = X]; then
stsstart shell must be started with /bin/ explicitly (or by alias) in the path.
(e.g. /serv/neuma/sts/bin/stsstart)
 LEN=`expr $0 : '.*/bin/' - 4`
 STS=`echo $0 | cut -c 1-${LEN}`
 export STS
fi

Filename STS//bin/stsstop

echo Stopping Active Servers...
sleep 5
Clearing unwanted Demo Library Files - REPEAT for each library
rm -f ${STS}/demo/inservice ${STS}/demo/shutdown.sts
cd ${STS}
echo Restarting Servers...
License Server
${STS}/bin/licserv > licserv.log&
Starting Demo Server (library and transaction servers)
${STS}/bin/sts demo -s
${STS}/bin/txnserv demo > txnserv.log&
Start any other library servers here.

	CM+ Demo Tutorial
	CM+ Demo Overview
	CM+ Libraries and Products
	Starting the Demo Server

	Project Management Role
	Project Manager Overview
	Setting a Development Context
	Setting a Project Context
	Viewing a Gantt Chart
	Adding a Project Within a Development Stream
	Adding Activities To a WBS
	Removing an Activity or Activity Sub-tree from a WBS
	Moving Activities in the WBS
	Web Display of a Project Definition
	Viewing Activity Flow
	Additional Project Management Operations

	PROBLEM TRACKING
	Raising a Problem Report
	Problem Flow
	Assigning a Problem
	Problem Dashboard
	Problem Reporting

	Developer Role
	Developer Overview
	Setting a Development Context
	Identifying Assigned Activities
	Identifying Assigned Problems
	Changing your Workspace
	The Source Tree
	Deploying a Source Tree
	Fixing a Problem
	Checking out a File and Branching
	Editing Source Code
	Creating a Delta Report
	Checking in an Update
	Promoting an Update to Ready
	Visual Delta
	Bulkloading a Sub-Tree
	Replying to a Problem Report
	Automatically Creating an Update from Workspace Differences
	Synchronizing Your Workspace
	Developer Dashboard
	WorkSpace Status Dashboard
	Workspace Status Operation
	Get Selected Files
	Modified Details
	Merge Details
	Analyze Workspace

	Configuration Manager Role
	CM Manager Overview
	Selecting Updates for a build
	Backing Out Updates
	Defining a New Product Configuration
	Freezing the Product Alignment into a Baseline
	Other Reasons for Creating a Build Record
	CM Manager Dashboard
	Build Flow
	Comparing Builds
	Creating a Build Delta Report

	Working with multiple Products
	Bulkloading a New Product
	Working with the New Product

	USER AND LIBRARY MANAGEMENT
	Adding a User
	Changing a User’s Roles

	Enabling Multiple User Access
	Deployment Strategy for CM+
	Scope of CM+ Functionality
	Identify initial projects to use CM+
	Install CM+ on the target server
	Loading in your data
	Load in your Users
	Load in your Current Activities/Tasks
	Load in your Current Set of Problem Reports

	Load in software products
	Loading Latest Baseline Only
	Loading Multiple Baselines of a Product

	Adjust the Pre-defined CM+ Processes and User Interface
	User Training
	Up and Running

	Converting to CM+MultiSite
	(M) At the MASTER SITE
	(S) At a new SLAVE SITE
	“stssites” File
	CM+ MultiSite Verification
	CM+ MultiSite Detailed Instructions
	CM+ MultiSite Transaction Server
	Key Log Files for CM+ MultiSite

	Neuma Services
	Neuma Services Special Considerations
	Neuma Servers on Unix Platforms

